A Primal Barrier Function Phase I Algorithm for Nonsymmetric Conic Optimization Problems
نویسندگان
چکیده
We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative matrix, and the set of those matrices the doubly nonnegative cone (DNN cone). The DNN cone is not symmetric but can be represented as the projection of a symmetric cone embedded in a higher dimension. In [16], the authors demonstrated the efficiency of the DNN relaxation using the symmetric cone representation of the DNN cone. They showed that the DNN relaxation gives significantly tight bounds for a class of quadratic assignment problems, but the computational time is not affordable as long as we employ the symmetric cone representation. They then suggested a primal barrier function approach for solving the DNN optimization problem directly, instead of using the symmetric cone representation. However, most of existing studies on the primal barrier function approach have assumed the availability of a feasible interior point. This fact means that those studies are not inextricably tied to the practical usage. Motivated by these observations, we propose a primal barrier function Phase I algorithm for solving conic optimization problems over the closed convex cone K having the following properties: (a) its interior int K is not necessarily symmetric, (b) a self-concordant function f is defined over int K, and (c) its dual cone K∗ is not explicit or is intractable, all of which are observed when K is the DNN cone. We analyze the algorithm and provide a sufficient condition for finite termination.
منابع مشابه
A homogeneous interior-point algorithm for nonsymmetric convex conic optimization
A homogeneous infeasible-start interior-point algorithm for solving nonsymmetric convex conic optimization problems is presented. Starting each iteration from the vicinity of the central path, the method steps in the approximate tangent direction and then applies a correction phase to locate the next well-centered primal-dual point. Features of the algorithm include that it makes use only of th...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Polynomial-Time Interior-Point Method for Conic Optimization, With Inexact Barrier Evaluations
We consider a primal-dual short-step interior-point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the primal and dual barrier functions is either impossible or prohibitively expensive. As our main contribution, we show that if approximate gradients and Hessians of the primal barrier function can be computed, and the relative errors in su...
متن کاملA New Self-Dual Embedding Method for Convex Programming
In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. ...
متن کاملInterior-point Algorithms for Convex Optimization Based on Primal-dual Metrics
We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms whose iteration complexity we analyse are so-called short-step algorithms. Our iteration complexity bounds match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming...
متن کامل